Resolutions of general canonical curves on rational normal scrolls
نویسندگان
چکیده
منابع مشابه
Divisors on Rational Normal Scrolls
Let A be the homogeneous coordinate ring of a rational normal scroll. The ring A is equal to the quotient of a polynomial ring S by the ideal generated by the two by two minors of a scroll matrix ψ with two rows and l catalecticant blocks. The class group of A is cyclic, and is infinite provided l is at least two. One generator of the class group is [J], where J is the ideal of A generated by t...
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملOn binomial equations defining rational normal scrolls
We show that a rational normal scroll can in general be set-theoretically defined by a proper subset of the 2-minors of the associated two-row matrix. This allows us to find a class of rational normal scrolls that are almost settheoretic complete intersections.
متن کاملOn Linear Systems of Curves on Rational Scrolls
In this paper we prove a conjecture on the dimension of linear systems, with base points of multiplicity 2 and 3, on an Hirzebruck surface.
متن کاملbinomial edge ideals and rational normal scrolls
let $x=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n x_2& ldots & x_n & x_{n+1} end{array}right)$ be the hankel matrix of size $2times n$ and let $g$ be a closed graph on the vertex set $[n].$ we study the binomial ideal $i_gsubset k[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $x$ which correspond to the edges of $g.$ we show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 2015
ISSN: 0003-889X,1420-8938
DOI: 10.1007/s00013-015-0794-x